TAVR Imaging Assessment Guideline *April 2017* ### **Pre-Procedure Imaging** | Region of
Interest | Recommended Approach
and
Key Measures | Additional Comments | |--|---|---| | Aortic Valve
Morphology | Transthoracic Echo (TTE) Tri-leaflet, bicuspid or unicuspid Valve calcification Leaflet motion Annular size and shape | Transesophageal Echo (TEE) if can be safely performed, particularly useful for subaortic membranes Cardiac MRI if echocardiography is nondiagnostic ECG-gated thoracic CTA if MRI is contraindicated | | Aortic Valve Function | Transthoracic Echo (TTE) Maximum aortic velocity Mean AV gradient AVA Stroke volume index Presence and severity of AR | Additional Parameters Dimensionless index AVA by planimetry (echocardiography, CT, MRI) Dobutamine stress echo for LFLG AS-reduced EF Aortic valve calcium score if LFLG AS diagnosis in question | | LV Geometry and
Other Cardiac
Findings | Transthoracic Echo (TTE) LVEF, regional wall motion Hypertrophy, diastolic FX Pulmonary pressure estimate Mitral valve (MR, MS, MAC) Aortic sinus anatomy and size | CMR: Identification of cardiomyopathies Myocardial ischemia and scar: CMR, PET, DSE, thallium CMR imaging for myocardial fibrosis and scar | | Annular Sizing | TAVR CTA-gated contrast-
enhanced CT thorax with multiple
acquisitions. Typically
reconstructed in systole 30 - 40%
of the R-R window. | Major/minor annulus dimension Major/minor average Annular area Circumference/perimeter | |---|--|---| | Aortic Root
Measurements | Gated contrast-enhanced CT thorax with multiphasic acquisition. Typically reconstructed in diastole 60 - 80%. | Coronary ostia heights Mid-sinus of valsalva (sinus to commissure, sinus to sinus) Sino-tubular junction Ascending aorta (40 cm above valve plane, widest dimension, at level of PA) Aortic root and ascending aorta calcification For additional measurement, see "Checklist for Pre-TAVR Patient Selection and Evaluation" | | Coronary Disease
and Thoracic
Anatomy | Coronary angiography Non-gated thoracic CTA | Coronary artery disease severity Bypass grafts: Number/location RV to chest wall distance Aorta to chest wall relationship | | Non-Cardiac Imaging | Carotid ultrasoundCerebrovascular MRI | May be considered depending on clinical history | ## Vascular Access Recommendations (Imaging Dependent on Renal Function) | Region of
Interest | Recommended
Approach | Key Parameters | |--|-------------------------|---| | Normal Renal
Function (GFR >60)
or ESRD Not
Expected to Recover | TAVR CTA | Aorta, great vessel, and abdominal aorta Dissection, atheroma, stenosis, calcification Iliac/subclavian/femoral luminal dimensions, | | | | calcification, and tortuosity | |--|--|--| | Borderline Renal
Function | Contrast MRA Direct femoral angiography (low contrast) | Institutional dependent protocols Luminal dimensions and tortuosity of peripheral vasculature | | Acute Kidney Injury
or ESRD with
Expected Recovery | Non-contrast CT of chest,
abdomen and pelvis Non-contrast MRA Can consider TEE if balancing
risks/benefits | Degree of calcification and
tortuosity of peripheral
vasculature | ### **Peri-Procedural Imaging** | Recommended
Approach | Additional Details | |---|--| | TAVR CTA | Predict optimal fluoroscopy angles for valve deployment | | Pre-procedure MDCT | Consider contrast aortic root
injection if needed 3D TEE to confirm annular
size | | Fluoroscopy under general anesthesia | TEE (if using general anesthesia) | | Direct aortic root angiography | TEE (if using general anesthesia) | | Transthoracic Echo (TTE) TEE (if using general anesthesia) Intra-cardiac echocardiography | See treatment options in
"TAVR Procedural
Complications and
Management" | | | Approach TAVR CTA Pre-procedure MDCT Fluoroscopy under general anesthesia Direct aortic root angiography Transthoracic Echo (TTE) TEE (if using general anesthesia) | ### **Long-Term Post Procedural Imaging** | Evaluate Valve
Function | Transthoracic Echo (See "Post
TAVR Checklist" for Frequency) | Key elements of echocardiography Maximum aortic velocity Mean aortic valve gradient Aortic valve area Paravalvular and valvular AR | |--|--|--| | LV Geometry and
Other Cardiac
Findings | Transthoracic Echo (TTE) LVEF, regional wall motion Hypertrophy, diastolic function Pulmonary pressure estimate Mitral valve (MR, MS, MAC) | | 2017 ACC Expert Consensus Decision Pathway for Transcatheter Aortic Valve Replacement in the Management of Adults With Aortic Stenosis A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents Catherine M. Otto, MD, FACC, Co-Chair; Dharam J. Kumbhani, MD, SM, FACC, Co-Chair; Karen P. Alexander, MD, FACC; John H. Calhoon, MD, FACC; Milind Y. Desai, MD, FACC; Sanjay Kaul, MD, FACC; James C. Lee, MD; Carlos E. Ruiz, MD, PHD, FACC; Christina M. Vassileva, MD, FACC _